

Lab 3

C Strings
Binary Trees

September 22nd, 2010
James Marshall

Tips

● On hobbes, always type “bash”
● Can use arrow keys
● History
● Auto complete

● = vs. ==
● Set pointer declarations to NULL
● Semicolons

09/22/10 jcmarsh@gwmail.gwu.edu 3

Motivation

● For learning C: To graduate
● For Binary Trees: They are cool!

09/22/10 jcmarsh@gwmail.gwu.edu 4

No really, Binary Trees are cool.

● Searching a balanced, sorted binary tree:
Elements in Tree Steps to Locate

Single Element

1,000 10

1,000,000 20

1,000,000,000 30

1,000,000,000,000 40

1,000,000,000,000,000 50

09/22/10 jcmarsh@gwmail.gwu.edu 5

First, C Strings

● Always “\0” (NULL) terminated
● Can statically allocated arrays

● Sets a limit on size
● Waste of memory

09/22/10 jcmarsh@gwmail.gwu.edu 6

Dynamic Allocation

● Slightly more complicated
● Size determined at run-time
● Can be any size needed
● Need to allocate and free memory

09/22/10 jcmarsh@gwmail.gwu.edu 7

Trees in Comp Sci

● Very common
● A special type of graph
● “Grow” downwards
● Node
● Root
● Depth
● Leaf
● Ancestor, Parent, Children

09/22/10 jcmarsh@gwmail.gwu.edu 8

Binary Search Tree

● Each node has 0 – 2 children
● Keys
● Left child key < parent key < right child key

09/22/10 jcmarsh@gwmail.gwu.edu 9

Insertion

● Is current node NULL?
● Done! Insert here.

● Is new node > current node?
● Insert into RIGHT subtree

● Is new node < current node?
● Insert into LEFT subtree

09/22/10 jcmarsh@gwmail.gwu.edu 10

That's Recursion!

● Easy, right?
● Simple to perform operations on trees

recursively
● Always:

● Base Case
● Recursive Case

09/22/10 jcmarsh@gwmail.gwu.edu 11

Search

● Is current node NULL?
● Done! But we didn't find it. :-(

● Does search key == current node key?
● Done! You found it! :-)

● Is search key < current node key?
● Search left tree.

● Is search key > current node key?
● Search right tree.

09/22/10 jcmarsh@gwmail.gwu.edu 12

Deletion

● More complicated
● No children: Delete
● One child: Delete, replace with child
● Two children: Replace with next or previous

predecessor, Delete the predecessor

● Not on homework

09/22/10 jcmarsh@gwmail.gwu.edu 13

Traversals

● “Walking” the tree
● Visit each node exactly once

● Defined by order nodes are visited
● In-Order
● Depth First
● Breath First

● If unsorted, these can be searches

09/22/10 jcmarsh@gwmail.gwu.edu 14

Depth First Traversal

● Visit
● Self
● Left
● Right

09/22/10 jcmarsh@gwmail.gwu.edu 15

Breath First Traversal

● Not as simple
● Queue of unvisited
● Visit

● Self
● Place left child in Queue
● Place right child in Queue
● Visit next in Queue

09/22/10 jcmarsh@gwmail.gwu.edu 16

In-Order

● To visit nodes in the order of their keys:
● Visit

● Left
● Self
● Right

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

